Direct evidence for the role of the membrane potential in glutathione transport by renal brush-border membranes.
نویسندگان
چکیده
Transport of GSH was studied in isolated rat kidney cortical brush-border membrane vesicles in which gamma-glutamyltransferase had been inactivated by a specific affinity labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125). Transport of intact 2-3H-glycine-labeled GSH occurred into an osmotically active intravesicular space of AT-125-treated membranes. The initial rate of transport followed saturation kinetics with respect to GSH concentrations; an apparent Km of 0.21 mM and Vmax of 0.23 nmol/mg protein X 20 were calculated at 25 degrees C with a 0.1 M NaCl gradient (vesicle inside less than vesicle outside). Sodium chloride in the transport medium could be replaced with KCl without affecting transport activity. The rate of GSH uptake was enhanced by replacing KCl in the transport medium with K2SO4, providing a less permeant anion, and was reduced by replacing KCl with KSCN, providing a more permeant anion. The rate of GSH transport markedly decreased in the absence of a K+ gradient across the vesicular membranes and was enhanced by a valinomycin-induced K+ diffusion potential (vesicle-inside-positive). These results indicate that GSH transport is dependent on membrane potential and involves the transfer of negative charge. The rate of GSH transport was inhibited by S-benzyl glutathione but not by glycine, glutamic acid, and gamma-glutamyl-p-nitroanilide. When incubated with [2-3H]glycine-labeled GSH, intact untreated vesicles also accumulated radioactivity; the rate of uptake was significantly higher in a Na+ gradient than in a K+ gradient. Sodium-dependent transport, but not sodium-independent uptake, was almost completely inhibited by a high concentration of unlabeled glycine. At equilibrium, most of the radioactivity which accumulated in the intravesicular space was accounted for by free glycine. These results suggest that GSH which is secreted into the tubular lumen by a specific translocase in the lumenal membranes or filtered by the glomerulus may be degraded in situ by membranous gamma-glutamyltransferase and peptidase activities which hydrolyze peptide bonds of cysteinylglycine and its derivatives. The resulting free amino acids can be reabsorbed into tubule cells by sodium-dependent transport systems in renal cortical brush-border membranes.
منابع مشابه
The Na+ gradient-dependent transport of D-glucose in renal brush border membranes.
The Na+-dependent transport of D-glucose was studied in brush border membrane vesicles isolated from the rabbit renal cortex. The presence of a Na+ gradient between the external incubation medium and the intravesicular medium induced a marked stimulation of D-glucose uptake. Accumulation of the sugar in the vesicles reached a maximum and then decreased, indicating efflux. The final level of upt...
متن کاملInteraction of beta-lactam antibiotics with H+/peptide cotransporters in rat renal brush-border membranes.
Two H+/peptide cotransporters, PEPT1 and PEPT2, are expressed in the kidney, mediating the renal tubular reabsorption of oligopeptides and beta-lactam antibiotics. We examined the interactions of beta-lactam antibiotics with peptide transporters in rat renal brush-border membranes by evaluating the inhibitory potencies of the antibiotics against glycylsarcosine transport. Western blot analysis ...
متن کاملCharacterization of Ca2+ transport in rat renal brush-border membranes and its modulation by phosphatidic acid.
The Ca2+ transport process by isolated renal brush-border membranes was characterized and the influence of the acidic phospholipid phosphatidic acid (PtdA) on this transport process was assessed. Ca2+ uptake by brush-border membranes exhibited saturation kinetics. It was inhibitable by a variety of multivalent cations, as well as by Ca2+-entry inhibitors, including verapamil, Ruthenium Red and ...
متن کاملEnergetics of the Na+-dependent transport of D-glucose in renal brush border membrane vesicles.
The energetics of the Na+-dependent transport of D-glucose into osmotically active membrane vesicles, derived from the brush borders of the rabbit renal proximal tubule, was studied by determining how alterations in the electrochemical potential of the membrane induced by anions, ionophores, and a proton conductor affect the uptake of the sugar. The imposition of a large NaCl gradient (medium i...
متن کاملThe sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles.
The uphill transport of D-glucose in renal brush border membrane vesicles was correlated with the Na+ electrochemical gradient. Each component of the electrochemical potential, the membrane potential (outside positive) or the Na+ chemical gradient, when assayed independently, supported the concentrative uptake of the sugar. When the two components were combined, the rates of D-glucose uptake we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 260 1 شماره
صفحات -
تاریخ انتشار 1985